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Protein crystals and charged surfaces: Interactions and heterogeneous nucleation

R. P. Sear*
Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

~Received 19 December 2002; published 20 June 2003!

As proteins typically have charges of around 10, they will interact strongly with charged surfaces. We
calculate the electrostatic contribution to the interaction of crystals of protein with charged surfaces. The
surfaces repel like-charged crystals and attract oppositely charged crystals, with free energies that can be easily
several kT per protein molecule brought into contact with the surface. This means that oppositely charged
surfaces can act as a nucleant, they can induce nucleation of a protein crystal by lowering the free energy
barrier to heterogeneous nucleation of the crystal from a dilute solution.

DOI: 10.1103/PhysRevE.67.061907 PACS number~s!: 87.14.Ee, 82.60.Nh, 64.60.Qb, 67.70.1n
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I. INTRODUCTION

Here we will consider the interaction between charg
surfaces and protein crystals. Proteins are themse
charged and so we would expect them to interact stron
with a surface that is charged. Using the Poisson-Boltzm
equation we find that indeed protein crystals are attracted
oppositely charged surfaces and repelled by surfaces
charges of the same sign. In itself this is hardly surprisi
but with quite simple calculations we quantify this attracti
and repulsion. We show that easily accessible surface ch
densities of the sign opposite to that of the protein molecu
are able to greatly favor heterogeneous nucleation at the
face by reducing the free energy of a nucleus at the sur
by severalkBT per protein molecule at the surface. Co
trolled heterogeneous nucleation is vital to the production
protein crystals, which are required for structure determi
tion via x-ray crystallography.

At a first-order phase transition, such as the crystallizat
of a protein from solution, the transition starts with nuc
ation @1,2#. Protein crystallization is the ‘‘main bottleneck
@3# in the determination of the three-dimensional structure
proteins. Determining this structure is crucial for understa
ing what a protein does and how it does it. Protein crys
lographers wish to:~i! induce nucleation in the relatively
weakly supersaturated solutions, within which protein cr
tals grow slowly and so incorporate few defects, and~ii !
control heterogeneous nucleation, in particular, have nu
ation occurring only at specific locations on a surface.
crystals only nucleate on widely separated patches on a
face then the growth of one crystal will not interfere with a
limit the growth of another crystal.

See, for example, Refs.@4,5# for experimental work on
adding solid surfaces to protein solutions to induce nuc
ation, and see Refs.@6,7# for experimental work on patterne
surfaces, which shows that protein crystals can be mad
grow preferentially on specified patches of a surface. In R
@6,7# a patterned surface is used in which patches of
surface are one form of doped Si and the rest is a diffe
form. The protein nucleates preferentially on one of the
forms and so by controlling where this form is found in t
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pattern, the crystals can be made to nucleate and grow
from each other, facilitating the formation of large crysta
Here we show that a pattern of two different surface types
opposite charges can produce sufficiently large difference
surface free energy to make heterogeneous nucleation m
easier on one surface than on the other.

We note that here we only consider the effects of cha
interactions, screened by a 1:1 electrolyte. Other interactio
such as short-range specific interactions between the pro
molecules and surface are known to be important, see
review of Ostuniet al. @8#. When these interactions are im
portant, our calculations, which neglect them, will only yie
estimates of thevariation with 1:1 salt concentration, of the
interaction free energy of a protein crystal or crystalli
nucleus with a surface. However, experimental systems
exist with high, variable charges and highly hydrophilic su
faces. These highly hydrophilic surfaces will have only we
nonelectrostatic interactions with the proteins; they also h
the advantage of minimizing the problem of protein denat
ation ~Fig. 1!.

One example is a highly charged self-assembled mo
layer, such as has been shown to adsorb polyelectrolytes@9#,

FIG. 1. Schematic representation of a nucleus of a protein c
tal against a charged surface. The hatched circles are the prote
the crystal lattice, each with its chargeQ marked. The surface is
shaded gray and the surface charges, positive in this case, are s
as1 ’s.
©2003 The American Physical Society07-1
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another is a membrane containing charged lipids@10,11#.
Both of these systems should be well described by the the
presented here. There is a great deal of work on the ass
tion of proteins and DNA with oppositely charged lip
membranes, Refs.@10,11# are just two examples of a larg
literature. As far as the author is aware, there has been
experimental study of adsorption of protein on a high
charged, highly hydrophilic, self-assembled monolayer,
such a system would offer the opportunity to study the eff
of electrostatics with minimal interference from other inte
actions. This is true both for the adsorption of single prote
and of protein crystals.

Our calculations will all be for infinite planar interface
despite the fact that our primary interest is in the nuclei
protein crystals against charged surfaces, not bulk crys
against surfaces. Although nuclei are small, few tens of p
tein molecules, the part of the free energy which scales w
the contact area between the nucleus and the surface will
dominate the edge contribution, as the Debye length is t
cally a few nm at most. Thus, we consider only the domin
surface term; considering subdominant terms within sim
theories of simple generic models is not useful. We will a
leave consideration of defects in the surface to later wor

In the following section we calculate the electrostatic co
tributions to the surface free energy. The third section
cludes example results and a discussion and the last se
is a conclusion.

II. CALCULATION

Here we calculate the electrical double layer contributio
to the interfacial free energies of solid–salt-solution, soli
protein-crystal, and solution–protein-crystal interfaces. T
calculation for the solution–protein-crystal interface is jus
repeat of that done in Ref.@12# and so will not be described
in detail. We will use the model of Ref.@12# for the protein
crystal and solution, along with a simple model of a charg
solid surface. As we are interested in interfacial free en
gies, it is most convenient to work at constant chemical
tential of the salt, and so the appropriate free energy is
grand potentialV. We will split this grand potential into the
part due to the charges on the surface and on the pro
molecules, together with the salt and counterions,Vel , and
another part that includes the rest of the interactions,Vnel ,

V5Vnel1Vel . ~1!

Vnel includes effects such as the dispersion interactions
tween the protein molecules and the surface, and any sh
range interactions between the surfaces of the proteins
the solid surface. We will not calculateVnel , and so will
only be able to estimate the absolute values of the interfa
free energies, whenVnel is much smaller thanVel , for ex-
ample, with highly charged, highly hydrophilic surfaces, a
highly charged proteins. However, if we assume thatVnel is
weakly dependent on the salt concentration, and that
charges on the surface can be varied without varyingVnel
06190
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significantly, our results will describe the variation in th
interfacial free energies with surface charge density and
salt concentration.

Rather than considering a specific protein crystal, we t
over the jellium concept from the theory of metals to mak
general estimate of the effect of salt on the interfacial t
sion. We replace the detailed charge density due to the
tein molecules by a uniform background charge densityrp ,
cut off abruptly at the interface. In Ref.@12#, Sear and War-
ren did so for the protein-crystal–salt-solution interface, a
this followed on from the work of Warren@13# on the bulk
phase behavior. Here when we calculate the interfacial
energy for a protein crystal at the surface, we will assume
protein crystal is flush against the surface and so the ch
density is uniform right up to the surface. Our model of t
charged surface of the substrate is that of an infinite char
plane at a fixed charge per unit areas. The solution outside
the crystal is taken to be sufficiently dilute that we can n
glect any protein molecules in it and treat it as a salt solut
at a concentrationrs . For definiteness, we take the protein
be positively charged so the counterions are negative and
coions are positive; both are monovalent. The surface is
the xy plane atz50, with the solid in thez,0 half space
and either a salt solution or a protein crystal in thez.0 half
space.

We will use the same notation as in Ref.@12#, so we work
in units wheree5kBT51. In these units, the Coulomb po
tential energyU between a pair of elementary charges se
rated byr is U5 l B /r , wherel B is the Bjerrum length, equa
to 0.72 nm in water at room temperature (l B5e2/4pekBT).
We assume a constant value ofl B , and ignore dielectric ef-
fects. The counterion and coion densities arer2(z) and
r1(z), respectively. In the bulk salt solution, both tend to t
salt concentrationrs , and inside the protein crystal (r2

2r1)→rp .
We will use a grand potential,Vel , which contains only

ideal solution terms for the ions and the associated elec
field at the interface. The grand potentialVel is @12#,

Vel5E
0

`

dzv~z!, v5 (
i 56

r i S ln
r i

rs
21D1

E2

8p l B
. ~2!

The first terms inv are the ideal solution terms~the ions
share a common chemical potentialm65 ln rs). The last term
is the electrostatic energy, whereinE52df/dz is the elec-
tric field strength corresponding to an electrostatic poten
f that satisfies the Poisson equation,

d2f

dz2
5H 24p l B~r12r2! ~salt solution!

24p l B~r12r21rp! ~protein crystal!.
~3!

The variational principledVel /d@r6(z)#50 applied in this
problem yieldsr6(z)5rsexp@7f#. The electrostatic poten
tial then satisfies the Poisson-Boltzmann equation,

d2f

dz2
2ks

2sinhf5H 0 ~salt solution!

24p l Brp ~protein crystal!,
~4!
7-2
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where

ks
258p l Brs . ~5!

For our assumption of a planar surface in thez50 xy plane,
with a fixed charge per unit areas, the boundary condition
on f at z50, is that the electric field at the surface

E52
df

dz
5

s

e
54p l Bs. ~6!

The other boundary condition is thatdf/dz50, z→`.

A. Surface–salt-solution interface

This is just the problem addressed by Gouy and Chapm
at the beginning of the last century@14#. For simplicity, we
will only derive the expressions in the regime where t
equations may be linearized. Then we will simply state
general result obtained when the equations are not lineari
Linearizsing the Poisson-Boltzmann equation, Eq.~4!, inside
the salt solution, and using the boundary conditions, we h

f~z!54p l Bsks
21exp~2ksz!, z.0, ~7!

a simple exponential decay from a value at the surface,
portional to the surface charge.

The surface free energy is, by definition, the differen
between the actual grand potential per unit area of
surface–salt-solution interface and that it would have if
salt solution continued unperturbed right up to solid surfa
We therefore have to calculate the grand potential, Eq.~2!,
then subtract the grand potential for the bulk solution: Eq.~2!
with the actualv(z) replaced by its value in the bulk sa
solution,v(1`) @15#,

Dgs5E
0

`

dz@v~z!2v~1`!#. ~8!

This is a general expression, in the linear regime we
expand outv of Eq. ~2! and keeping only the terms up t
quadratic order inf, we have thatv522rs12rsf

2. The
bulk valuev(1`)522rs , as the potential in the bulk o
the salt solution is taken to be zero. The surface free en
is then obtained by substituting these expressions into
~8!. Doing this and using Eq.~7!, we have

Dgs52p l Bs2ks
21 ~ linear!, ~9!

which is positive and proportional to the square of the s
face charge and to the screening length, as we might h
expected.

If Eq. ~4! is not linearized the potentialf is given by
@12,14# f52 ln@(11Ce2ksz)/(12Ce2ksz)#, whereC is deter-
mined by the boundary condition Eq.~6! and is given by

C5
ks

2p l Bs FA11S 2p l Bs

ks
D 2

21G . ~10!
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Thus, we can evaluate the surface free energy once we
converted Eq.~8! into an expression in terms off only.
Equation~4! in the salt solution can be integrated once w
respect tof,

S df

dzD 2

52ks
2~coshf21!, ~11!

which gives us the electric field term inv. The other, ideal
gas, term can be written in terms ofrs and f using r6(z)
5rsexp@7f#. ThenDgs is given by the integral

Dgs52rsE
0

`

dzf sinhf, ~12!

which is straightforward to evaluate numerically.

B. Surface–protein-crystal interface

As with the surface–salt-solution interface, we start w
the linear Poisson-Boltzmann equation. Here the potentia
that inside the protein crystal so we linearize Eq.~4! and
obtain

d2f

dz2
5ks

2S f2
rp

2rs
D , ~13!

where we used Eq.~5! for ks . The second term inside th
parentheses is minus the Donnan potentialfD inside the pro-
tein crystal. The general expression for the Donnan poten
is

sinhfD5
rp

2rs
, ~14!

which when linearized givesfD5rp /(2rs). Thus, the solu-
tion to Eq.~13!, with the boundary condition of fixed charg
density, Eq.~6!, is

f~z!5fD14p l Bsks
21exp~2ksz!, z.0. ~15!

In the bulk protein crystal,f5fD . We expand thev of
Eq. ~2! in powers of fD and keep only the terms up t
quadratic order, and find that in the crystalv(2`)522rs

12rsfD
2 @12#. Performing the same expansion at the int

face, we obtain for the excess grand potential at the interf

v2v~2`!5rs@f22fD
2 12~f2fD!2#, ~16!

where we used Eq.~15! to obtain the derivativedf/dz. The
interfacial free energy per unit areaDgx is the integral over
all z of the excess grand potential of Eq.~16!. It is

Dgx52p l Bs2ks
211sfD ~ linear!. ~17!

If we do not linearize the Poisson-Boltzmann equatio
Eq. ~4!, we can still integrate it once to obtain

S df

dzD 2

52ks
2~coshf2coshfD!28p l Brp~f2fD!.

~18!
7-3
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Combining this with the boundary condition, Eq.~6!, we
obtain an equation for the potential at the surfacef(z50),

$2ks
2@coshf~z50!2coshfD#28p l Brp@f~z50!2fD#%1/2

564p l Bs, ~19!

which can be solved forf(z50), and then once this is
known the profilef(z) is readily obtained by numerically
integrating Eq.~18!. On the right hand side the1 (2) sign
is taken whens.0 (s,0). The interfacial free energy i
then obtained from

Dgx5E
0

`

dz@v~z!2v~2`!#, ~20!

where the grand potential per unit volume in the prot
crystal is v(2`)522rs(coshfD2fD sinhfD). Using
r6(z)5rsexp@7f#, and Eq.~18! for the electric field term
in Eq. ~2!, we have that the electrical double layer contrib
tion to the free energy of the solid-protein interface is giv
by

Dgx52rsE
0

`

dzf@sinhf2sinhfD#. ~21!

C. Salt-solution–protein-crystal interface

This interface was the subject of Ref.@12#. In the high salt
regime where the Poisson-Boltzmann equation can be lin
ized, the electrical double layer contribution to the free e
ergy of the interface between a protein crystal and a
solution is

Dgel52
rsfD

2

2ks
~ linear!. ~22!

See Ref.@12# for the full nonlinear calculation.

III. RESULTS

We can calculate the free energies of the three interfa
solid–salt solution, solid–protein crystal, and salt solutio
protein crystal. This allows us to see whether a protein cr
tallite, such as a nucleus or growing crystallite in solution
attracted or repelled by the surface. It is attracted if the f
energy change on bringing a protein crystal from the b
solution to the surface is negative and repulsive if the cha
is positive. When a protein crystallite is brought from t
bulk of the solution into contact with the surface, two inte
faces are destroyed, that between the salt solution and
protein crystal and that between the salt solution and
solid, and one is created, that between the solid and the
tein crystal. Thus, the free energy change per unit area
protein crystal brought into contact with the solid is

D52Dgs2Dgel1Dgx , ~23!

which in the high salt limit is, using Eqs.~9!, ~17!, and~22!,
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2ks
1sfD ~ linear!. ~24!

The first term comes from the disappearance of the s
solution–protein-crystal interface and is positive as the e
trical double layer contribution to the interfacial tension
this interface is always negative; see Ref.@12# for a discus-
sion. AsfD has the same sign as that of the charges on
protein molecules~here taken to be positive!, the second
term is positive if the surface and protein molecules ha
charges of the same sign and negative if they have oppo
signs. As we should expect, surfaces repel crystals of p
teins with the same charge. They attract crystals of op
sitely charged protein molecules, provided that the surf
charges is sufficiently high. If the charge density is small o
zero then they repel protein crystals due to the free ene
cost of destroying the salt-solution–protein-crystal interfa

Equation ~24! is obtained by linearizing the Poisson
Boltzmann equation. We have also solved the full equat
and present example results in Figs. 2 and 3. The param
for the protein are those used previously@12#, and were cho-
sen to model lysozyme. This is a small protein with quite
large net charge for its size, whose behavior in NaCl so
tions has been extensively studied@13,16–19#. The model
used here has been shown to give the variation with N
concentration of the solubility of lysozyme crystals correc
to within a factor of about 2; it overpredicts the variatio
@13,19#. The agreement between its predictions and the
face force apparatus measurements of Sivasankaret al. @20#
of the repulsion between monolayers of the protein strep
vidin, is comparable@12#. To model lysozyme we took a
chargeQ510 @13,17,21#, and a charge density due to th
protein rp50.25 nm23, obtained by taking the volume pe
lysozyme molecule in the crystal to be 40 nm3. The surface

FIG. 2. The electrical double layer contribution to the change
free energy per unit area, times the surface area of the crysta
protein molecule, when a protein crystal is brought from the bulk
the salt solution to the charged surface of a solid,D l 2, Eq.~23!. The
solid, dotted, dot-dashed, and dashed curves are for charge den
se51, 0.1, 20.1, and21 nm22, respectively. Results are show
for salt concentrations down to 0.025M . In the limit of the salt
concentration tending to zero the surface free energies diverge
7-4
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area of the protein crystal per lysozyme molecule is taken
be l 2512 nm2 @12#. For proteins such as lysozyme whic
have a significant net charge we would expect our pre
tions to be approximately as accurate as those of earlier
dictions of this theory, i.e., predicting the trends correctly b
giving numbers that are a factor of 2 or more out. We exp
our predictions to be unreliable if the net charge is sm
then the interaction between the dipole moment of the p
tein and the surface may dominate, or if the charge is dist
uted on the surface in a way that is highly inhomogeneou
the charge density within the volume within a few Deb
lengths of the surface differs greatly fromrp , then our as-
sumption of uniform charge density due to the protein will
poor. See Ref.@12# for further discussion of the assumptio
that the protein crystal can be modeled by a step-func
charge density.

In Fig. 2 we see that for lysozyme and solid surfaces w
s561 nm22, the free energy change of bringing the pr
tein crystal into contact with the solid is substantial unle
the salt concentration is around 1M . Even at a salt concen
tration of 1M , the free energy change is close to 2kBT per
lysozyme molecule at the surface of the protein in cont
with the solid surface. Whereas at salt concentrations
about 0.1M and lower the free energy change is of ord
10kBT per lysozyme molecule. Note, however, that we ha
assumed that the protein crystal is in a salt solution, i.e
solution with negligible amounts of protein in it. Decreasi
the salt concentration increases the solubility of lysozy
@17#, and so this assumption will tend to worsen as the
concentration drops@12,13#. The salt is not only changing
the interaction between the protein and the surface but
the interaction in between protein molecules, and this ne
to be borne in mind.

In Fig. 3 we see that at high salt concentrations, 1M , the
free energy change on bringing a crystal into contact with
surface is never more than a couple ofkBT, even for quite

FIG. 3. The electrical double layer contribution to the change
free energy per unit area, times the surface area of the crysta
protein molecule, when a protein crystal is brought from the bulk
the salt solution to the charged surface of a solid,D l 2, Eq.~23!. The
solid, dashed, and dotted curves are for salt concentrations ors

50.1M , 0.5M , and 1M , respectively.
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highly charged surfaces. However, for more modest salt c
centrations of 0.1M , rather large free energy decreases p
protein molecule are easily obtained at modest charges
unit area on the surface. Also, note thatD is slightly positive
for an uncharged surface. This is due to the fact that
electrical double layer contribution to the protein-crysta
salt-solution interface is negative, Eq.~22!, and this contri-
bution is lost when the protein crystal is brought into cont
with the surface.

The potential near the surface, both when the salt solu
is in contact with the surface and when the protein crysta
is shown in Fig. 4. When the protein crystal is in contact w
the surface the potential tends to its value in the bulk of
crystal: the Donnan potential, which is 1.48 here. The pot
tial at the surface is larger than one, and so the linear
proximation is quite poor for the charges561 nm22. In
particular, Eq.~24! significantly overestimates the magnitud
of D at high surface charges. However, Eq.~24! is reason-
ably accurate for the smaller charge per unit area,s5
60.1 nm22. As an example, fors521 nm22 and rs
50.1M , D l 25211.1 without linearization, whereas Eq
~24! predictsD l 25217.0.

IV. CONCLUSION

We have used an existing@12,13# generic model of a pro-
tein crystal to estimate the electrostatic contributionD to the
free energy change when a protein crystal is brought i
contact with a surface with a fixed charge densitys. Unsur-
prisingly, the free energy change is negative for a surf
with a charge opposite in sign to that on the protein m
ecule, and positive if the surface has a charge with the s
sign. We quantified this and found that very reasona
charge densities, of 1 elementary charge per nm2 or less,

n
er
f

FIG. 4. The potential, in units ofkBT/e, as a function of dis-
tancez from the surface. The solid curves are for a salt solution
contact with the surface and the dashed curves are for a pro
crystal against the surface. The upper solid and dashed curve
for a positively charged surface,s51 nm22, and the lower curves
are for a negatively charged surface,s521 nm22. The salt con-
centration is 0.1M , and the protein is positively charged,rp

50.25 nm23.
7-5
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were sufficient to achieve free energy changes per pro
molecule at the surface of severalkBT or more, provided the
salt concentration was less than around 1M . The electro-
static contribution to the free energy is the energy associ
with the electrostatic interactions in between the surfa
protein molecules, and salt and counterions, and the tran
tional entropy of the salt and counterions. Typically, the
will also be nonelectrostatic interactions of the proteins w
the surface; particularly if the surface is at least modera
hydrophobic. Then the proteins may even unfold, resulting
irreversible adsorption. Thus, our results will be releva
only to those surfaces which are sufficiently hydrophilic th
the proteins interact only weakly with the surface and do
unfold. However, obtaining such surfaces is relative
straightforward via the use of self-assembled monolay
@8,9#. Our model of the protein is a very simple one, app
priate for proteins with reasonably large net charges, so
the terms we calculate should be dominant, and where
charge is distributed so that the charge density facing
surface is neither much higher nor much lower than the
erage charge density on the surface of the protein.

Perhaps the most important reason for considering pro
crystals at surfaces is interest in their heterogeneous nu
ation. Protein crystals nucleate at surfaces and so withou
understanding of crystallites at surfaces we cannot hop
understand how the crystals actually form. Crystallizing p
teins is essential for the determination of their all-importa
three-dimensional structure via x-ray crystallography@2,3#.
Heterogeneous nucleation is an activated process@1# and so
proceeds at a rate that scales as exp(2DF* /kBT), where
DF* is the height of the free energy barrier that must
overcome. Typical sizes of the critical nuclei in nucleati
are a few tens of protein molecules, and so one face
crystalline nucleus has perhaps ten, or a few less, pro
molecules. The critical nucleus is that at the top of the b
rier, the nucleus that requires a free energyDF* to create it
@1#. Thus, the variation inDF* with D will be approximately
10D l 2. From Figs. 2 and 3, we see that this may easily
tens of kBT, causing increases or decreases in the rate
heterogeneous nucleation of many orders of magnitude.
barrier to nucleation may be lowered by tens ofkBT, induc-
ing nucleation in solutions that would otherwise be me
stable, or it may be raised by tens ofkBT preventing nucle-
ation from occurring on one part of the surface. The form
is required if a surface is to be used as a nucleant: a sur
that triggers nucleation@4,5#. The latter is required for spatia
control of heterogeneous nucleation@6,7#.

Finally, we consider wetting by the crystalline phase
as
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the surface–salt-solution interface. At coexistence, for a b
solution phase in contact with the surface, a direct surfa
salt-solution interface is not the only possibility. It is possib
for a slab of the protein crystal to be interposed between
surface and the solution phase. The direct surface–s
solution interface is then replaced by a surface–prote
crystal interface plus solution–protein-crystal interface. T
protein crystal is said to have wet the surface–salt-solu
interface. Wetting occurs at equilibrium whenever it lowe
the free energy@14,22#. Denoting the full interfacial tensions
of the surface–salt-solution, surface–protein-crystal, a
solution–protein-crystal interfaces bygs , gx , andg, respec-
tively, we have that the free energy change on interposin
slab of protein crystal between the surface and the solutio
2gs1gx1g. Note that here the interfacial tension of th
solution–protein-crystal interface appears with a posit
sign whereas it appears with a negative sign in the defini
of D, Eq. ~23!. When a layer of the protein crystal is create
so is a solution–protein-crystal interface, whereas when
existing protein crystal surrounded by solution is broug
into contact with the surface a solution–protein-crystal int
face is destroyed.

Determining the sign of2gs1gx1g is not possible
without determining both the electrostatic and nonelect
static contributions to all three interfacial tensions. Howev
in Ref. @12#, the interfacial tensiong was estimated to be a
few kBT per area of a protein molecule, i.e.,g l 25O(1). If
we further assume that2gs1gx is dominated by electrostat
ics, then in the linear regime2gs1gx.sfD , from Eqs.~9!
and ~17!. Thus for the electrostatic attraction between
oppositely charged surface and a protein crystal to drive w
ting of the surface–salt-solution interface, we require t
usfDu l 2.O(1). For highly charged surfaces,s of order
1 nm22, and low salt concentrations, this inequality is eas
satisfied.

If the protein crystal wets the surface–salt-solution int
face, then assuming that the layer of protein crystal can it
nucleate on the surface it will do so and the bulk prote
crystal can grow from this layer at the surface. Then
barrier to crystallization will be close to zero and the prote
will readily crystallize from solution@23#. This assumes tha
the layer itself can nucleate, see Ref.@22# for an introduction
to wetting layers, both at equilibrium and their nucleation

ACKNOWLEDGMENTS

I would like to thank P. Warren for introducing me to th
theory of electrostatic effects in proteins. This work was su
ported by The Wellcome Trust~069242!.
, J.
@1# P.G. Debenedetti,Metastable Liquids~Princeton University
Press, Princeton, 1996!.

@2# F. Rosenberger, P.G. Vekilov, M. Muschol, and B.R. Thom
J. Cryst. Growth168, 1 ~1996!.

@3# N.E. Chayen, Trends Biotechnol.20, 98 ~2002!.
@4# A. McPherson and P. Shlichta, Science~Washington, DC,

U.S.! 239, 385 ~1988!.
,

@5# N.E. Chayen, E. Saridakis, R. El-Bahar, and Y. Nemirovsky
Mol. Biol. 312, 591 ~2001!.

@6# A. Sanjoh and T. Tsukihara, J. Cryst. Growth196, 691~1999!.
@7# A. Sanjoh, T. Tsukihara, and S. Gorti, J. Cryst. Growth232,

618 ~2001!.
@8# E. Ostuni, L. Yan, and G.M. Whitesides, Colloids Surf., B15,

3 ~1999!.
7-6



ol-

f.

d

L

atl.

se
st
tal
alt-
les
ibit
ated

tion
ilute
the
o-
ar, J.

PROTEIN CRYSTALS AND CHARGED SURFACES: . . . PHYSICAL REVIEW E 67, 061907 ~2003!
@9# S.L. Clark, M.F. Montague, and P.T. Hammond, Macrom
ecules30, 7237~1997!.

@10# K. Wagner, D. Harries, S. May, V. Kahl, J.O. Ra¨dler, and A.
Ben-Shaul, Langmuir16, 303 ~2000!.

@11# D. Murray, A. Arbuzova, G. Hangya´s-Mihyálynyé, A. Gamb-
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